6 research outputs found

    An Ontological Approach to Inform HMI Designs for Minimizing Driver Distractions with ADAS

    Get PDF
    ADAS (Advanced Driver Assistance Systems) are in-vehicle systems designed to enhance driving safety and efficiency as well as comfort for drivers in the driving process. Recent studies have noticed that when Human Machine Interface (HMI) is not designed properly, an ADAS can cause distraction which would affect its usage and even lead to safety issues. Current understanding of these issues is limited to the context-dependent nature of such systems. This paper reports the development of a holistic conceptualisation of how drivers interact with ADAS and how such interaction could lead to potential distraction. This is done taking an ontological approach to contextualise the potential distraction, driving tasks and user interactions centred on the use of ADAS. Example scenarios are also given to demonstrate how the developed ontology can be used to deduce rules for identifying distraction from ADAS and informing future designs

    An Ontological Approach to Inform HMI Designs for Minimising Driver Distractions with ADAS

    No full text

    Б1.В.ДВ.2.1 ФОС Организация государственных учреждений

    Get PDF
    International audienc

    Search for Multi-messenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during its first Observing Run, ANTARES and IceCube

    No full text
    Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origin could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational wave and neutrino emission processes

    Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube

    No full text
    corecore